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ABSTRACT

In this paper we propose a novel visibility-culling technique for
optimizing the computation and rendering of opaque isosurfaces.
Given a continuous scalar field f (x) over a domain D and an iso-
value w, our technique exploits the continuity of f to determine
conservative visibility bounds implicitly, i.e., without the need for
actually computing the isosurface f−1(w).

We generate Implicit Occluders based on the change in sign of
f ∗(x) = f (x)−w, from positive to negative (or vice versa) in the
neighborhood of the isosurface. Consider, for example, the sign of
f ∗ along a ray r cast from the current viewpoint. The first change
in sign of f ∗ within D must contain an intersection of r with the
isosurface. Any additional intersection of the isosurface with r is
not visible.

Implicit Occluders constitute a general concept that can be ex-
ploited algorithmically in different ways depending on the frame-
work adopted for visibility computations. In this paper, we propose
a simple from-point approach that exploits well-known hardware
occlusion queries.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation–Bitmap and Framebuffer Operations—Display Algo-
rithms I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Geometric algorithms

Keywords: isosurfaces, visibility computations, occlusion culling,
marching cubes, computational geometry, volume visualization,
graphics hardware algorithms

1 INTRODUCTION

Isosurfaces play a central role in the visualization of three dimen-
sional scalar fields. By being able to compute and display isosur-
faces interactively, scientists can explore their datasets, study de-
tailed features of interest and obtain insights into the inner work-
ings of real physical phenomena and simulated models. Because of
their ubiquitous use in visualization, the computation and rendering
of isosurfaces has received great attention from the visualization
research community. Starting with the invention of the Marching
Cubes algorithm [13], a whole effort towards the development of
effective techniques for the computation and visualization of iso-
surfaces has been in continuous progress for over a decade (see,
e.g., [1–5, 11, 12, 14, 15, 17, 19, 20]).

This paper introduces a technique that exploits the continuity of
the underlying scalar field to speed up the computation and render-
ing of isosurfaces by performing visibility computations. The key
interesting property of our technique is that it can find occluders
without explicitly computing the isosurface, thus the term Implicit
Occluders for our technique. We exploit auxiliary information that
is usually stored for speeding up the isosurface computation. Given

Figure 1: Overview of Implicit Occluders. The fundamental idea in
Implicit Occluders is to exploit the continuity of a scalar field f (x)
to define regions of occlusion. In general, any ray traveling from a
region that is above (or resp. below) the isosurface threshold to one
that is below (above) has to intersect the isosurface, thus implicitly
(i.e., without the need for computing the surface) defining regions of
occlusion.

an octree representation of a volume, a generic cell c usually stores
the minimum f min

c and maximum f max
c values of the scalar field in

c. The computation of an isosurface with isovalue w is greatly ac-
celerated using a coarse-to-fine traversal of the octree that skips the
subtrees for which the range [ f min

c , f max
c ] does not contain w.

We use this information to generate occluders by observing that
if a cell ci, with range entirely above w, is in front of a cell c j, with
range entirely below w, they together form an occluder. In fact,
any ray intersecting both ci and c j must also intersect the isosur-
face in the region between them. In other words, even though ci
and c j themselves contain no piece of the isosurface, ci becomes
an occluder when covered by c j, and c j becomes an occluder when
covered by ci. Moreover, the occluder is valid for any level of res-
olution and could therefore be used to avoid refining the surface
itself.

Using the concept of Implicit Occluders we propose a new effi-
cient from-point visibility algorithm that exploits visibility queries
commonly available on graphics hardware to speed up the extrac-
tion and rendering of an isosurface by early elimination of large
occluded regions. We present practical results obtained with a pro-
totype implementation of our approach.

2 RELATED WORK

In this section, we focus on techniques most related to our work, in
particular work related to output-sensitive isosurface extraction and
visibility culling algorithms designed for the display of isosurfaces.

Techniques for the efficient computation of isosurfaces started
with the Marching Cubes algorithm [13]. Given a voxel grid with
n voxels, the number k of active voxels (i.e., voxels that contain
the isosurface) is usually only a small percentage of the whole do-
main. The Marching Cubes algorithm takes O(n) time to compute
any isosurface because it scans all the voxels in the domain. Wil-
helms and Van Gelder [20] were the first to propose an optimized
data-dependent technique. They build an octree on top of the regu-
lar voxel array and save for each node the minimum and maximum



values of the scalar field within the corresponding voxels. This al-
lows skipping the traversal of the octree nodes that do not contain
the isosurface. Livnat et al. [12,17] define the notion of span space,
from which they developed a number of efficient isosurface extrac-
tion algorithms. A related technique is the work of Cignoni et al. [5]
and of Bajaj et al. [1], who independently introduced the first al-
gorithm that is provably optimum for extraction of full resolution
isosurfaces. Another set of techniques are based on the use of seed
cells [1, 2]. These, and others [3, 4], have been extended to work
in external memory, making it possible to compute isosurfaces of
arbitrarily large data.

A more recent, but no less important research thread is the ef-
ficient rendering of isosurfaces. A key idea in this work is that
a solution that first computes a complete isosurface and then uses
a generic visibility culling algorithm [6] is simply too inefficient.
Instead, simpler and more efficient approaches can be achieved
by custom developing (or modifying) an (existing) algorithm to
take visibility into account for computing and rendering a given
isosurface. The first such approach was proposed by Livnat and
Hansen [11] based on previous work by Greene [8]. The essential
idea of their work is to build image-space occluders using hierarchi-
cal tiles while incrementally computing the isosurface. Another re-
lated technique is the approach of Gao and Shen [7]. They propose
a parallel multi-pass technique, where each processor computes a
piece of the isosurface, separating visible and invisible parts, until
the whole surface is completed.

The main difference between our approach and both [11] and [7]
is that we do not need to compute the isosurface to create occlud-
ers. The occluders are built using more generic information about
the scalar field. This may have both advantages and disadvantages.
It is much cheaper to compute and generate occluders that are valid
for surfaces at different levels of resolution. At the same time Im-
plicit Occluders provide only a conservative estimate of the shape
of an occluding portion of an isosurface. Depending on the input
data such an estimate may be too conservative to provide a practical
advantage in the isosurface computation and rendering stage.

In an unpublished manuscript, Tsai et al. [18] developed inde-
pendently a visibility framework based on the same concept of im-
plicit occlusion calculations. Their work provides a nice theoreti-
cal characterization of occlusion culling queries based on ray trac-
ing. Moreover, they propose an algorithm for extracting implicit
occludes using sign distance functions from closed geometric sur-
faces. The theoretical foundations of our work can be cast within
the same framework while we focus on the computation of implicit
occluders for isosurfaces and take advantage of the existing scalar
field and do not need to build the auxiliary signed distance function.
We propose an efficient algorithm that takes advantage of advanced
features of current graphics hardware. Moreover, our synchroniza-
tion of the multi-resolution representations of the occluders and of
the isosurfaces allows providing culling information for isosurfaces
of undetermined level of detail.

3 IMPLICIT OCCLUDERS

Consider a continuous scalar field f (x) defined on a domain D and
a real value w. We study the generation of occluders for the isosur-
face f (x) = w with isovalue w. For sake of simplicity we assume,
without loss of generality, that w = 0.1 Additionally, we assume
that the domain D is convex, which is true in our test cases (recti-
linear grids). This limitation could also be removed but at the cost
of making the discussion and the implementation of the approach
much more complicated without providing any additional insight in
the presentation of the fundamental concept.

1If w is not zero, we can simply define an auxiliary function f ∗(x) =
f (x)−w and use f ∗ in place of f .

f(x) > 0

f(x) < 0

Visible ray

Occluded sub-ray

Figure 2: Implicit Occluders and from-point visibility. One way to
exploit Implicit Occluders for optimizing the rendering and computa-
tion of isosurfaces is by using a from-region approach. The key idea
here is to classify nodes of the octree to be fully above and/or below
the isosurface query value. Then to use this knowledge by computing
for each image-space ray the first sign change.

Our technique exploits the continuity of f to determine conserva-
tive visibility bounds implicitly, i.e., without computing the isosur-
face f−1(0). In particular, we generate Implicit Occluders based on
the change in sign of f (x), from positive to negative (or vice versa)
in the neighborhood of the isosurface.

Assume that f is known to have only positive values in a region
A ⊂ D and to have only negative values in a region B ⊂ D. Since
D is convex, any ray segment r connecting a point in A to a point
in B is entirely contained in D. Moreover, the value of f along r
changes continuously from positive to negative and therefore must
have a zero crossing, which is an intersection with the isosurface
f−1(0).

Consider now a particular viewpoint and the central projection
A∗ of the region A onto the boundary of B. Any segment connect-
ing the current viewpoint with A∗ must also intersect the isosurface
f−1(0). Therefore, the region R behind A∗ is completely occluded
and A∗ can be used as an occluder in place of f−1(0). Fig. 1 illus-
trates the idea.

Note that the construction of the occluder A∗ is derived from
a pure existence argument and does not require the computation
of f−1(0). This means that the occluder A∗ is valid for any other
scalar function f ′ such that f ′(A) > 0 and f ′(B) < 0 (or vice versa).
This can be used in the coarse-to-fine traversal of a multiresolution
representation where we generate the occluder A∗ as soon as we
establish that f ′(A) > 0 and f ′(B) < 0. Any further refinement of
the field can radically change the position and topology of f−1(0),
but not the fact that the region R is not visible.

In order to use this simple concept to develop an algorithm for
efficient computation and rendering of isosurfaces, a number of is-
sues must be addressed. First of all, the regions where the function
does not change sign must be computed. Then, for a given view-
point, one must determine which regions are occluded and which
regions are visible and potentially contain the isosurface. Finally,
the actual isosurface extraction and rendering need to be performed.

3.1 A From-Point Algorithm

Implicit Occluders do not define a specific algorithm to be used for
visibility calculations. In this paper, we develop a simple and ef-
ficient from-point approach to explore the effectiveness of Implicit
Occluders. The general idea is to explore the framework of Wil-
helms and Van Gelder [20] with ideas similar to the work of Liv-
nat and Hansen [11]. Our fundamental data structure is an octree
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Figure 3: Occluder envelope. This figure depicts the occluder as
the far envelope of the regions above and below the isosurface query
value.

augmented with per node min-max information to allow efficient
determination of the areas of the octree which might contain the
isosurface (see Fig. 2). We use the nodes of the octree that are com-
pletely above and below the isovalue as potential occluders, which
are rendered to create screen-space occluders. Visibility computa-
tion is achieved by adaptively pruning parts of the octree that are
obscured by the per-pixel occluders built from the composition of
the octree nodes by using hardware occlusion queries [6].

The complete algorithm can be divided into three main parts:

1. Build screen-space per-pixel occluders.

2. Use hardware occlusion-culling queries to prune invisible
parts of the octree.

3. For the remaining (visible) nodes, compute and render the iso-
surface (optionally using an approach similar to [10]).

Parts (2) and (3) use previously developed techniques, see, e.g.,
[10, 13]. In the rest of this section, we will describe our technique
for building the screen-space per-pixel occluders.

Before presenting (1), we need to review the functionality of
the hardware occlusion-culling query available on current graphics
boards, and what is needed to use them. The key idea is to use the
current snapshot of a partially complete depth buffer to cull away
geometry that can not be seen. That is, in order to test if a given ob-
ject O is visible or not, we would check whether a bounding volume
bv(O), usually the bounding box of the object, is visible and only
render the object if bv(O) is visible. This query is performed with-
out changing the contents of the depth and color buffers. If bv(O)
is determined to be visible, then O is rendered, and O’s contents
are used to update the relevant buffers. The use of these occlusion-
culling queries does not bring much benefit unless some significant
amount of visible, occluding geometry has been rendered. In order
to achieve this, some visibility algorithms, such as the one described
by Klosowski and Silva [10], propose to bootstrap the depth buffer
by rendering a guess of the visible set [9], which is then refined by
rendering more geometry until the picture is done.

In the approach described here, Implicit Occluders are used for
generating a set of occluders without the need to compute any vis-
ible geometry. The algorithm to build the per-pixel occluders in-
volves finding regions of screen-space overlap between nodes that
are above and below the isosurface value, as shown in Fig. 3. Po-
tentially, there are several such regions for a given pixel, but we
are interested only in finding the closest occurrence of such a sign
change (see the red ray in Fig. 2).

A naive way to compute the depth values for each pixel to serve
as such an occluder would be to use a three pass approach. First, the
nodes of the octree that are below the isovalue are rendered with the
depth function set to keep the closest fragments to the viewer and
the stencil buffer is set up to flag where pixels were written (to allow
for the pixels to be identified later on). Then the same is performed

for each pixel (i, j)
range(i, j)← ∞

incomplete(i, j)← false
for each node N with f max

N < w
for each scan converted depth value z(i, j) of bv(N)

incomplete(i, j)← true
if z(i, j) < range(i, j) then

range(i, j)← z(i, j)
sort nodes front-to-back
for each node N with f min

N > w
for each scan converted depth value z(i, j) of bv(N)

if incomplete(i, j) then
incomplete(i, j)← false
if z(i, j) > range(i, j) then

range(i, j)← z(i, j)
for each pixel (i, j)

if incomplete(i, j) then
range(i, j)← ∞

Figure 4: Pseudocode for building an occlusion map using Implicit
Occluders. In the algorithm description, ‘range’ is the depth (positive
distance) of the occlusion map (implemented as a depth buffer) and
‘incomplete’ signifies whether a pixel is covered only by a region
below the isolevel (implemented using a one-bit stencil buffer). The
isovalue is represented by w.

on the nodes that are above the isovalue. Finally, both buffers are
traversed on a per-pixel basis. For each location that a pixel was
written to both buffers (which can be determined by examining the
stencil buffer), we can compute the farther depth value and store
it in a buffer that will be used as the occluder depth buffer. This
approach is quite inefficient since it requires maintaining multiple
depth and stencil buffers and transferring them between the GPU
and CPU back and forth.

Fortunately, there is a more efficient algorithm that does not suf-
fer from the disadvantages cited above. We need both the depth and
(one bit of) stencil buffers in the implementation, but require only
one instance of each buffer and no read-backs. The scheme is based
on a two-pass strategy, where all the nodes with negative function
value are drawn in the first pass and the nodes with positive func-
tion value are drawn in the second pass. The stencil buffer is used
to determine which pixels have been covered in the first pass, that
is for which pixels a partial Implicit Occluder has been generated.
The second pass is performed front-to-back,2 and sets the correct
depth for the Implicit Occluders that are completed. The depth of
the Implicit Occluders that remain incomplete after the second pass
is finally set back to infinity. See Fig. 4 for the algorithm. It is pos-
sible to map this to OpenGL using depth buffering and stenciling:

glClearDepth(1);

glClearStencil(0);

glClear(GL DEPTH BUFFER BIT | GL STENCIL BUFFER BIT);

glStencilOp(GL KEEP, GL REPLACE, GL REPLACE);

This clears the buffers. Then, before the first render pass, we set

glDepthFunc(GL LESS);

glStencilFunc(GL ALWAYS, 1, 1);

Then, before the second pass,

glDepthFunc(GL GREATER);

glStencilFunc(GL NOTEQUAL, 0, 1);

To reset the depth values for incomplete pixels, we render a polygon
that lies behind the octree by drawing a slightly expanded root node.

2Note that this only requires traversing the octree structure front-to-back,
i.e. no actual sorting is done.



Figure 5: Occlusion maps from Implicit Occluders. The figure shows a simple example of occlusion maps obtained from Implicit Occluders
to highlight the process. On the left, we show a hyperbolic paraboloid, z = x2− y2, which is an isosurface of f (x,y,z) = x2− y2− z. The second
and third image from the left show the octree nodes used for occluder generation and the computed occlusion map, respectively. The next two
images show the same information for refined occluders. The octree nodes are color coded using the sign of the scalar field.

4 EXPERIMENTAL RESULTS

We have implemented the algorithm described above in C++, and
we used OpenGL for our graphics library. The implementation is
straightforward and closely matches the description of the algo-
rithm given in the previous section. One caveat of the implemen-
tation is that we use the Nvidia occlusion-culling query extension.
We report our results on a DELL Workstation 360 configured with
one Pentium 4 running at 2.8 Ghz, 1.5 GB of RAM, and an Nvidia
FX 1000 card. For the reported results, we had RedHat 9 installed
on this machine.

For the results reported below, we note that we do not compute
and cache the actual polygons that constitute the isosurface. In-
stead, each time we would like to render an octree node, the iso-
surface contained in that node is computed and rendered. We use
an output-sensitive algorithm for the computation of the isosurface
though. First we use the min-max information in the nodes to effi-
ciently determine the nodes of the octree which might contain the
isosurface by performing a top-down traversal which avoids touch-
ing nodes that do not contain the isosurface. Next we test these
nodes for occlusion and compute the isosurface in each visible node
using the Marching Cubes algorithm [13]. Our approach is more
computationally expensive than caching the polygonal mesh. On
the other hand, it reduces memory consumption and allows for the
modification of the isovalues interactively. This reported work is
part of a larger project to make it possible to extract isosurfaces
from very large datasets. In those scenarios, the idea is to use the
Implicit Occluders to first determine the data that is potentially vis-
ible, and to then incrementally fetch the data from disk and render
it. Finally, we note that isosurface computations can be performed
directly in programmable hardware [16], thus making caching po-
tentially unnecessary.

As we go through our results, there are several important points
that need to be addressed. Possibly the most important is the sav-
ings in the number of rendered isosurface triangles obtained by
our from-point algorithm. Second is the overall savings in time,
which depends on our particular implementation and current hard-
ware limitations, and we believe it is amenable to further optimiza-
tions. In our experiments we would like to highlight the costs of
our algorithm. In particular, there are costs to: build the implicit
occluder; test the octree nodes for occlusion; and finally extract and
render the isosurface.

We have run our code on a number of real and synthetic datasets.
For all examples we used an octree with a maximum depth of 7. To
build the implicit occluders, we may choose to use a level of the oc-
tree above the maximum depth. This saves time in constructing the
occluder, but potentially lowers its coverage area. For isosurfaces
with very fine detail (such as our synthetic example), it becomes
quite useful to use more refined occluders. Note that the best re-
sults in terms of total time depend on this choice, given the associ-

Figure 6: Synthetic scalar field.

ated costs. In the three reported examples, the best timing results
are not obtained at the maximum possible depth. The reason for
this is that excessive refinement of the octree can be more expen-
sive than computing and rendering a few additional (invisible) faces
of the isosurface. On the other hand, the per-face rendering time for
the occlusion map is often significantly lower than the per-face dis-
play time for the isosurface. The latter not only includes the CPU
and memory overhead of extracting and storing the isosurface, but
also involves a higher rendering cost, e.g., for lighting, texturing,
smooth shading, etc. In contrast, we can use a very fast rendering
path for the occlusion map by disabling lighting, etc., while mak-
ing efficient use of a single triangle fan for the three visible quads of
each octree cell. Indeed, while the total number of rendered trian-
gles after occlusion culling may in some cases even exceed the size
of the original isosurface, we are still able to obtain a significant
speedup by rendering “cheaper” triangles.

We first report the results for a synthetic dataset: the scalar field
f (x,y,z) = sin(xyz/8)+cos((x−2)(y−2)(z−2)) defined over the
interval [−5,5]3. For our tests, we chose the zero isosurface, which
has 2,023,877 triangles. The average time to compute and render all
these triangles without using occlusion tests is about 7.01 seconds
(see Fig. 6).

Fig. 7 compares the time to display (i.e., compute and render)
the zero isosurface for each of 31 views. In this example, we used
depth 7 to build the implicit occluders and we tested octree nodes
up to depth 6 for visibility using an adaptive coarse-to-fine traver-



Figure 7: Display times for the synthetic scalar field. The green
graph shows the total time for computing and rendering the zero
isosurface using Implicit Occluders, and the blue graph is the total
time without visibility tests.

sal. On average, Implicit Occluders are more than twice as fast as
not doing visibility computations. We take a closer look at this re-
sult in Fig. 8, which shows the times for the different phases of the
algorithm. Fig. 9 shows the number of triangles computed and ren-
dered. Observe that the time is proportional to the number of faces
computed.

In Table 1, we show detailed statistics (including timings) of
variations of implicit-occluder build depth versus occlusion query
depth. The best result in terms of total frame time was for the case
7/6 at 2.45 seconds. Observe that in the case 7/7 we get 65,315
fewer isosurface faces than in the case 7/6. Here the additional vis-
ibility tests are more expensive than computing and rendering the
extra geometry. Notice that we are not able to find any non-trivial
occlusion when the build depth is 4.

Table 2 shows detailed timings for one particular view of the
MRI head (see Fig. 10). Without visibility computations, the num-
ber of isosurface triangles in this example is 493,932, and it takes
1.12 seconds to compute and render this isosurface for the same
reference view. Using our technique (with 7/6 build/cull depth),
we lower the time to 0.43 seconds, i.e., 38% of the original time.
The number of faces rendered is reduced to 69,663, i.e., 14% of the
total.

Table 3 lists the results for the neghip, shown in Fig. 11. This
isosurface has 246,194 triangles. Without visibility computations,
it takes 0.63 seconds to compute and render the triangles. Using
our technique, we lower the time to 0.29 seconds and the number
of triangles to 80,564.

5 DISCUSSION

Our experiments show that our from-point algorithm is very effec-
tive at separating visible and invisible geometry. A nice feature
of the implicit framework is that it makes it possible to delay data
transfer and other computations to the very end of the pipeline. This
leads us to believe that our algorithm might be suited for use in re-
mote and out-of-core visualization.

A nice feature of our from-point algorithm is that it does not
require expensive readbacks from the GPU to the CPU, which often
limit the performance of other algorithms. After we finished our
implementation, we determined that one of the slowest operations
is the traversal of the octree. (See Table 4.) On average, we spend
50% of the time to compute an Implicit Occluder in the traversal of

Figure 8: Breakdown of the total frame time using implicit occlud-
ers. The red region corresponds to the time for building the implicit
occluders. The blue region corresponds to the time for testing the
octree nodes for visibility. The green region represents the time for
computing and rendering the isosurface contained in the nodes that
passed the visibility test.

Figure 9: Number of triangles. The green graph shows the number
of triangles in the isosurface rendered by our algorithm using an
octree depth of 6 for visibility tests. The blue graph is the number of
triangles without visibility computations (constant at approximately
2 million).

the octree. A simple way to lower this cost that has been sucessfully
employed by other researchers is to use a “shallow” hierarchical
data structure, e.g., a two-level grid [15].

We now briefly discuss limitations of our technique. An intrinsic
limitation is related to the fact that we need to find sign variations
along the rays in the viewing direction. Since this is done by a
sampling approach, we need to make sure that we are sampling suf-
ficiently densely to find the sign change. For functions that change
sign quite rapidly, this might cause the algorithm to essentially fail,
meaning we might need to visit the entire full resolution dataset, in
which case Implicit Occluders do not buy us much.

The technique described here is quite general, and it works even
for non-convex occluders. There are some caveats, though. One
issue has to do with supporting non-convex domains in the context
of extracting isosurfaces from unstructured grids. The from-point
algorithm described in this paper assumes that the scalar field is
defined over a convex domain. For the non-convex domain, one
needs to make sure that sign differences that happen along a ray in
the viewing direction but in different “connected components” are
not considered.



Occluder construction Cull depth
depth time nodes map 7 6 5 4 3

7 0.64 533,253

Total time 3.25 2.45 2.64 2.96 3.47
Cull time 1.35 0.31 0.11 0.09 0.10
Surf. faces 378,906 444,221 542,241 684,733 819,348
Cull nodes 400,808 78,600 14,176 2,352 392

6 0.11 48,944

Total time 3.01 2.96 3.26 3.62
Cull time 0.46 0.15 0.12 0.12
Surf. faces 741,273 814,817 898,944 1,017,575
Cull nodes 113,880 18,400 2,840 456

5 0.01 3,557

Total time 4.07 4.37 5.03
Cull time 0.28 0.20 0.18
Surf. faces 1,111,660 1,233,561 1,423,012
Cull nodes 25,752 3,760 536

4 0.00 121

Total time 7.01 6.97
Cull time 0.26 0.24
Surf. faces 2,023,877 2,023,877
Cull nodes 4,600 584

Table 1: Detailed statistics for the synthetic dataset using different occluder build and cull depths. The depth, time and number of octree nodes
rendered to build the occlusion map for a given level are listed on the left. The cull time and number of octree nodes (Cull nodes) involved in
the occlusion queries (i.e., tested for occlusion), as well as the total frame time and number of rendered isosurface triangles are shown on the
right for various maximum cull depths.

Figure 10: The MRI head and its level 5, 6, and 7 occluders. Figure 11: The neghip and its level 5, 6, and 7 occluders.



Occluder construction Cull depth
depth time nodes 7 6 5 4 3

7 0.19 169,903

Total time 0.58 0.43 0.46 0.58 0.77
Cull time 0.27 0.08 0.03 0.03 0.03
Surf. faces 55,494 69,663 103,478 167,891 258,007
Cull nodes 80,616 21,632 5,912 1,656 440

6 0.05 27,382

Total time 0.58 0.57 0.66 0.86
Cull time 0.14 0.06 0.04 0.04
Surf. faces 180,783 216,203 272,956 364,565
Cull nodes 39,936 8,520 2,056 464

5 0.01 4,207

Total time 0.88 1.02 1.05
Cull time 0.14 0.12 0.07
Surf. faces 346,430 405,463 460,242
Cull nodes 11,896 2,424 480

4 0.001 716

Total time 1.13 1.10
Cull time 0.13 0.08
Surf. faces 475,274 485,599
Cull nodes 2,536 480

Table 2: Results for the head dataset (size: 256×256×109), isolevel w = 24.58 with 493,932 triangles. See Table 1 for a detailed description.

Occluder construction Cull depth
depth time nodes 7 6 5 4 3

7 0.17 165,604

Total time 0.64 0.44 0.39 0.41 0.45
Cull time 0.34 0.11 0.04 0.02 0.02
Surf. faces 59,578 68,557 79,178 91,010 108,889
Cull nodes 98,496 27,512 7,320 1,824 400

6 0.05 38,974

Total time 0.33 0.29 0.33 0.35
Cull time 0.11 0.05 0.02 0.03
Surf. faces 70,961 80,564 91,576 110,049
Cull nodes 28,008 7,392 1,840 400

5 0.01 8,372

Total time 0.33 0.35 0.36
Cull time 0.11 0.09 0.05
Surf. faces 92,075 104,415 126,284
Cull nodes 8,368 2,024 408

4 0.002 1,374

Total time 0.50 0.55
Cull time 0.09 0.06
Surf. faces 170,669 207,957
Cull nodes 3,168 568

Table 3: Results for the neghip dataset (size: 66×66×66), isolevel w = 1.03 with 246,194 triangles. See Table 1 for a detailed description.



Dataset Build
depth

Build
time

Traversal
time %

7 0.641 0.353 55%
Synthetic 6 0.110 0.075 68%

5 0.011 0.001 9%
7 0.194 0.096 49%

Head 6 0.048 0.022 46%
5 0.006 0.004 67%
7 0.164 0.081 49%

Neghip 6 0.054 0.025 46%
5 0.009 0.005 56%

Table 4: The time spent traversing the octree as a percentage of the
total time to build the Implicit Occluder.

6 CONCLUSION AND FUTURE WORK

In this paper we introduced the novel concept of Implicit Occluders
for isosurfaces of a scalar field. Before extracting the isosurface,
we build the Implicit Occluders by exploiting the standard min-
max information normally used only for avoiding traversal of empty
regions.

We implemented the scheme for the case of rectilinear grids
using an octree multi-resolution representation. Our experiments
show that the amount of occlusion generated is sufficiently large to
save the cost of computing large portions of the isosurface. The
main advantage of this scheme is the ability to generate conserva-
tive occluders from geometric information that is potentially much
coarser than the actual geometry being rendered. Therefore, the en-
tire visibility culling process can be managed with much less space
and time resources. In practice, the difference in resolution between
the rendered surface and the geometry used to generate the occlud-
ers becomes the parameter driving the tradeoff between the quality
of the occluders generated and the amount of resources devoted to
the visibility culling computation.

We plan to experiment with a more extensive use of the implicit
occluders. In particular we plan to develop a tighter coupling of the
occlusion culling with the isosurface refinement process to avoid
refining invisible regions, similar to how the min-max information
avoids refinement in empty regions. Moreover, we plan to experi-
ment with the scalability of the scheme for very large datasets and
develop a parallel and out-of-core implementation of our approach.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. DOE by
LLNL under contract no. W-7405-Eng-48. Cláudio T. Silva is par-
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